

Project: 6ENSE (6OS)

 Website: 6ense.it
 Platform: Ethereum

Language: Solidity
 Date: March 24th, 2025

https://www.6ense.it/

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Key Smart Contract and Exchange Addresses…………….………………………………… 6

Whitelist Address(excluded from fee) ………………………………………………………… 6

Audit Scope ……………………………………………………………………………………… 6

Claimed Smart Contract Features …………………………………………………………….. 7

Audit Summary ……………....…………………………………………………………………..9

Technical Quick Stats …..……………………………………………………………………… 10

Business Risk Analysis …..…………………………………………………………………… 11

Code Quality ……………………………………………………………………………………. 12

Documentation ………………………………………………………………………………….. 12

Use of Dependencies …………………………………………………………………………… 12

AS-IS overview ………………………………………………………………………………….. 13

Severity Definitions ……………………………………………………………………………... 15

Audit Findings …………………………………………………………………………………… 16

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 23

● Solidity static analysis ….……………………………………………………………….. 26

● Solhint Linter …………………………………………………………………….……….. 28

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS A SECURITY AUDIT REPORT DOCUMENT AND MAY

CONTAIN INFORMATION THAT IS CONFIDENTIAL. WHICH INCLUDES

ANY POTENTIAL VULNERABILITIES AND MALICIOUS CODES THAT

CAN BE USED TO EXPLOIT THE SOFTWARE. THIS MUST BE

REFERRED INTERNALLY AND ONLY SHOULD BE MADE AVAILABLE

TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction

EtherAuthority was contracted by the 6ENSE team to perform the Security audit of the
6OS Token smart contract code. The audit has been performed using manual analysis as
well as using automated software tools. This report presents all the findings regarding the
audit performed on March 24th, 2025.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The Token6OS contract is an ERC-20 token with reflection mechanics, tax mechanisms,

and liquidity management features. It includes:

Key Features:

1. Reflection Mechanism:

● It uses a reflection model, where holders passively earn more tokens.

● Instead of sending rewards manually, the total token supply is split into:

○ _rOwned: Reflects the actual balance for each holder.

○ _tOwned: Stores token amounts before reflections.

● Rewards are distributed automatically whenever transfers occur.

2. Tax System:

● Two main taxes:
○ Reflection Tax: Distributes fees among holders.

○ PlantoGroup Tax: Sends fees to a designated wallet.

● Taxes are adjustable by the owner but capped at 6%.

3. Liquidity Management:

● Integrates Uniswap V2 for automated market-making.

● Contract swaps collect taxes for USDC and send them to the PlantoGroup Wallet.

● Uses a tax threshold to determine when to swap.

4. Transaction Limits & Controls:

● Max Transfer Limit: Prevents large transfers.

● Trading Enable/Disable: The owner can toggle trading.

● Exclusions: Certain addresses can be exempt from fees and reflections.

5. Ownership & Governance:

● Only the owner can:

○ Update taxes, tax threshold, and max transfer amount.

○ Enable or disable trading.

○ Exclude/include addresses from rewards and fees.

○ Update the PlantoGroup Wallet address.

Token6OS is a reflection-based ERC20 token with a built-in tax system, Uniswap
liquidity integration, and automated USDC conversion. It rewards holders passively

while collecting fees for external use.

Key Smart Contract and Exchange Addresses:

Owner Address 0x06fE8f07513f7a0C3a3D4A948bee12263c3197AF

Planto Group Wallet 0x9C27bF771ea62dE8e4281e971f72d52D49c58486

Uniswap Pair Address 0xB8Edb72A75ef76bC60FF4D5da124cf118a1Ed8B0

Uniswap Router Address 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D

USDC Address 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48

Whitelist Address(excluded from fee):

Token Contract Address 0x69119d3BC1277efb4200c12082F46E596FDF9d39

Owner Address 0x06fE8f07513f7a0C3a3D4A948bee12263c3197AF

Audit scope

Name Code Review and Security Analysis Report for
6ENSE (6OS) Token Smart Contract

Platform Ethereum

File Token6OS.sol

Smart Contract Code 0x69119d3bc1277efb4200c12082f46e596fdf9d39

Audit Date March 24th, 2025

https://etherscan.io/address/0x06fE8f07513f7a0C3a3D4A948bee12263c3197AF
https://etherscan.io/address/0x9C27bF771ea62dE8e4281e971f72d52D49c58486#tokentxns
https://etherscan.io/address/0xB8Edb72A75ef76bC60FF4D5da124cf118a1Ed8B0#code
https://etherscan.io/address/0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D#code
https://etherscan.io/address/0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48#code
https://etherscan.io/address/0x69119d3BC1277efb4200c12082F46E596FDF9d39#code
https://etherscan.io/address/0x06fE8f07513f7a0C3a3D4A948bee12263c3197AF
https://etherscan.io/token/0x69119d3bc1277efb4200c12082f46e596fdf9d39#code

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

Tokenomics:
● Name: 6ENSE

● Symbol: 6OS

● Decimals: 18

● Total Supply: 9,630 million $6OS

YES, This is valid.

Core Features:

1. Tokenomics & Supply Management:
● Reflection Mechanism: Implements a

reflection-based fee distribution system.

● Planto Group Fee: A portion of transactions is

allocated to a designated wallet.

2. Trading & Transfer Controls :
● Max Transfer Limit: Transactions cannot exceed

192.6 million tokens (modifiable).

● Trading Enable/Disable: The owner can toggle

trading.

● Tax Threshold: Swaps and tax distribution occur

when the contract balance exceeds 1,000 tokens.

3. Fee System:
● Reflection Tax: Distributes a percentage of

transactions to existing holders.

● Planto Group Tax: Sends fees to a designated

wallet.

● Fee Exclusions: Certain addresses can be

excluded from paying fees.

4. Liquidity & Swapping:
● Uniswap Integration: Uses UniswapV2 Router for

token swaps.

YES, This is valid.

● Swap & Liquify: Automatically convert fees to

USDC and send them to a wallet.

5. Reflection & Rewards:
● Reflections: Rewards holders by redistributing

transaction fees.

● Exclusion from Rewards: Certain addresses can be

excluded from receiving reflections.

6. Administrative Controls:
● Ownership Functions: Includes onlyOwner

modifiers for sensitive functions.

● Adjustable Taxes: Reflection and Planto Group

taxes are adjustable (max 6%).

● Max Transfer Updates: The Owner can modify max

transaction limits.

Audit Summary

According to the standard audit assessment, the Customer's solidity-based smart contract
is “Secured.” This token contract has ownership control and is not fully 100%
decentralized.

 You are here

We used various tools like Slither, Solhint, and Remix IDE. At the same time, this finding is
based on a critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit Overview section. The general overview is
presented in the AS-IS section and all identified issues can be found in the Audit overview
section.

We found 0 critical, 0 high, 0 medium, 0 low, and 1 very low-level issue.

Investor Advice: The technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner-controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

The solidity version is not specified Passed
The solidity version is too old Passed
Integer overflow/underflow Passed

Function input parameters lack check Passed
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Passed
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Moderated
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Passed
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage is not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Business Risk Analysis
Category Result

Buy Tax Adjustable
(reflection and plantoGroup Tax - max

6%)

Sell Tax Adjustable
(reflection and plantoGroup Tax - max

6%)

Can Buy Yes

Can Sell Yes

Max Tax 6%

Modify Tax Yes

Fee Check Yes

Is Honeypot Not Detected

Trading Cooldown Not Detected

Can Pause Trade? Not Detected

Pause Transfer? Not Detected

Max Tax? Yes

Is it Anti-whale? Yes

Is Anti-bot? Not Detected

Is it a Blacklist? Not Detected

Blacklist Check Not Detected

Can Mint? No

Is it a Proxy? No

Can Take Ownership? Yes

Hidden Owner? Not Detected

Self Destruction? Not Detected

Auditor Confidence High

Overall Audit Result: PASSED

Code Quality

This audit scope has 1 smart contract. Smart contracts contain Libraries, Smart contracts,

inherits, and Interfaces. This is a compact and well-written smart contract.

The libraries in 6OS Token are part of its logical algorithm. A library is a different type of

smart contract that contains reusable code. Once deployed on the blockchain (only once),

it is assigned a specific address and its properties/methods can be reused many times by

other contracts in the 6OS Token.

The 6ENSE Token team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are well commented on in the smart contract. Ethereum’s NatSpec

commenting style is recommended.

Documentation

We were given a 6OS Token smart contract code in the form of an Etherscan web link.

As mentioned above, code parts are well commented on. And the logic is straightforward.

So it is easy to quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the protocol.

Use of Dependencies
As per our observation, the libraries used in this smart contract infrastructure that is based

on well-known industry standard open-source projects.

Apart from libraries, its functions are not used in external smart contract calls.

https://etherscan.io/token/0x69119d3bc1277efb4200c12082f46e596fdf9d39#code

AS-IS overview

Token6OS.sol : Functions

Sl. Functions Type Observation Conclusion
1 constructor write Passed No Issue
2 name external Passed No Issue
3 symbol external Passed No Issue
4 decimals external Passed No Issue
5 totalSupply external Passed No Issue
6 balanceOf read Passed No Issue
7 transfer external Passed No Issue
8 allowance external Passed No Issue
9 approve write Passed No Issue

10 transferFrom external Passed No Issue
11 increaseAllowance external Passed No Issue
12 decreaseAllowance external Passed No Issue
13 isExcludedFromReward external Passed No Issue
14 totalFees external Passed No Issue
15 deliver external Passed No Issue
16 reflectionFromToken external Passed No Issue
17 tokenFromReflection read Passed No Issue
18 excludeFromReward write access only owner No Issue
19 includeInReward external access only owner No Issue
20 excludeFromFee external access only owner No Issue
21 includeInFee external access only owner No Issue
22 setplantoGroupWallet external access only owner No Issue
23 updateThreshold external access only owner No Issue
24 receive external Passed No Issue
25 _approve write Passed No Issue
26 _reflectFee write Passed No Issue
27 _takePlantoFee write Passed No Issue
28 _getValues read Passed No Issue
29 _getValue read Passed No Issue
30 _getTValues read Passed No Issue
31 _getRValues read Passed No Issue
32 _getRate read Passed No Issue
33 _getCurrentSupply read Passed No Issue
34 calculateTaxFee read Passed No Issue
35 calculatePlantoTax read Passed No Issue
36 removeAllFee write Passed No Issue
37 setTrading external Unused function Refer Audit

Findings
38 updateReflectionTaxPer external access only owner No Issue
39 updatePlantoGroupTax external access only owner No Issue
40 setMaxTransferLimit external access only owner No Issue

41 _transfer write Passed No Issue
42 swapAndLiquify write Passed No Issue
43 swapTokensForUsdc write Passed No Issue
44 _tokenTransfer write Passed No Issue
45 _transferBothExcluded write Passed No Issue
46 _transferStandard write Passed No Issue
47 _transferToExcluded write Passed No Issue
48 _transferFromExcluded write Passed No Issue
49 owner read Passed No Issue
50 onlyOwner modifier Passed No Issue
51 renounceOwnership write access only owner No Issue
52 transferOwnership write access only owner No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have a significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused, etc. code snippets, that can’t have a significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium-severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

Very Low / Informational / Best practices:

(1) Unused function:

The tradeEnabled is not used during transfers.

Resolution: We suggest removing all related codes from the contract. Remove setTrading

function, TradeEnabled event, and tradeEnabled boolean variable.

Centralization

This smart contract has some functions that can be executed by the Admin (Owner) only. If

the admin wallet's private key would be compromised, then it would create trouble.

The following are Admin functions:

Token6OS.sol
● excludeFromReward: Grants the owner the ability to exclude an address from

earning reflections.

● includeInReward: Grants the owner the ability to include an account in the reward

distribution.

● excludeFromFee: Grants the owner the ability to exclude an address from

transaction fees.

● includeInFee: Grants the owner the ability to include an address in transaction fees.

● setplantoGroupWallet: Sets the address of the fund wallet by the owner.

● updateThreshold: Grants the owner the ability to update the threshold amount used

for Plantogroup wallet addition.

● setTrading: Enables or disables trading functionality based on the input parameter

by the owner.

● updateReflectionTaxPer: Updates the reflection tax (max 6%) by the owner.

● updatePlantoGroupTax: Updates the PlantoGroup tax (max 6%) by the owner.

● setMaxTransferLimit: Sets the maximum buy limit per transaction. Can only be

called by the contract owner.

Conclusion

We were given a contract code in the form of Etherscan web links. We have used all

possible tests based on the given objects as files. We observed 1 informational severity

issue in the smart contract. but this issue is not critical. So, it’s good to go for the
production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover the maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in the reviewed

code.

The security state of the reviewed smart contract, based on standard audit procedure

scope, is “Secured”.

https://etherscan.io/token/0x69119d3bc1277efb4200c12082f46e596fdf9d39#code

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of the systems we review and

aim for sufficient remediation to help protect users. The following is the methodology we

use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and white

box penetration testing. We look at the project's website to get a high-level understanding

of what functionality the software under review provides. We then meet with the

developers to gain an appreciation of their vision of the software. We install and use the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative, and

we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally, we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract by the best industry practices at the
date of this report, about: cybersecurity vulnerabilities and issues in smart contract source
code, the details of which are disclosed in this report, (Source Code); the Source Code
compilation, deployment and functionality (performing the intended functions).

Because the total number of test cases is unlimited, the audit makes no statements or
warranties on the security of the code. It also cannot be considered a sufficient
assessment regarding the utility and safety of the code, bug-free status, or any other
statements of the contract. While we have done our best in conducting the analysis and
producing this report, it is important to note that you should not rely on this report only. We
also suggest conducting a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee the explicit
security of the audited smart contracts.

Appendix
Code Flow Diagram - 6ENSE (6OS) Token

Slither Results Log

Slither is a Solidity static analysis framework that uses vulnerability detectors, displays

contract details, and provides an API for writing custom analyses. It helps developers

identify vulnerabilities, improve code comprehension, and prototype custom analyses

quickly. The analysis includes a report with warnings and errors, allowing developers to

quickly prototype and fix issues.

We analyzed the project altogether. Below are the results.

Slither Log >> Token6OS.sol

INFO:Detectors:
Contract locking ether found:
 Contract Token6OS (Token6OS.sol#338-1116) has payable functions:
 - Token6OS.receive() (Token6OS.sol#719)
 But does not have a function to withdraw the ether
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether
INFO:Detectors:
Token6OS.allowance(address,address).owner (Token6OS.sol#491) shadows:
 - Ownable.owner() (Token6OS.sol#139-141) (function)
Token6OS._approve(address,address,uint256).owner (Token6OS.sol#733) shadows:
 - Ownable.owner() (Token6OS.sol#139-141) (function)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing
INFO:Detectors:
Reentrancy in Token6OS._transfer(address,address,uint256) (Token6OS.sol#942-980):
 External calls:
 - swapAndLiquify() (Token6OS.sol#962)
 -
uniswapV2Router.swapExactTokensForTokens(tokenAmount,0,path,plantoGroupWallet,block.ti
mestamp) (Token6OS.sol#1010-1016)
 State variables written after the call(s):
 - _tokenTransfer(from,to,amount,takeFee) (Token6OS.sol#979)
 - _tFeeTotal = _tFeeTotal + tFee (Token6OS.sol#748)
 - plantoFee = plantoGroupTax (Token6OS.sol#977)
 - _tokenTransfer(from,to,amount,takeFee) (Token6OS.sol#979)
 - plantoFee = 0 (Token6OS.sol#885)
 - refAmt = reflectionTax (Token6OS.sol#976)
 - _tokenTransfer(from,to,amount,takeFee) (Token6OS.sol#979)
 - refAmt = 0 (Token6OS.sol#884)

Reentrancy in Token6OS.transferFrom(address,address,uint256) (Token6OS.sol#518-522):
 External calls:
 - _transfer(sender,recipient,amount) (Token6OS.sol#519)
 -
uniswapV2Router.swapExactTokensForTokens(tokenAmount,0,path,plantoGroupWallet,block.ti
mestamp) (Token6OS.sol#1010-1016)
 State variables written after the call(s):
 - _approve(sender,_msgSender(),_allowances[sender][_msgSender()] - amount)
(Token6OS.sol#520)
 - _allowances[owner][spender] = amount (Token6OS.sol#737)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
INFO:Detectors:
Reentrancy in Token6OS._transfer(address,address,uint256) (Token6OS.sol#942-980):
 External calls:
 - swapAndLiquify() (Token6OS.sol#962)
 -
uniswapV2Router.swapExactTokensForTokens(tokenAmount,0,path,plantoGroupWallet,block.ti
mestamp) (Token6OS.sol#1010-1016)
 Event emitted after the call(s):
 - ReflectedFee(tFee) (Token6OS.sol#750)
 - _tokenTransfer(from,to,amount,takeFee) (Token6OS.sol#979)
 - Transfer(sender,recipient,tTransferAmount) (Token6OS.sol#1077)
 - _tokenTransfer(from,to,amount,takeFee) (Token6OS.sol#979)
 - Transfer(sender,recipient,tTransferAmount) (Token6OS.sol#1113)
 - _tokenTransfer(from,to,amount,takeFee) (Token6OS.sol#979)
 - Transfer(sender,recipient,tTransferAmount) (Token6OS.sol#1095)
 - _tokenTransfer(from,to,amount,takeFee) (Token6OS.sol#979)
 - Transfer(sender,recipient,tTransferAmount) (Token6OS.sol#1060)
 - _tokenTransfer(from,to,amount,takeFee) (Token6OS.sol#979)
Reentrancy in Token6OS.transferFrom(address,address,uint256) (Token6OS.sol#518-522):
 External calls:
 - _transfer(sender,recipient,amount) (Token6OS.sol#519)
 -
uniswapV2Router.swapExactTokensForTokens(tokenAmount,0,path,plantoGroupWallet,block.ti
mestamp) (Token6OS.sol#1010-1016)
 Event emitted after the call(s):
 - Approval(owner,spender,amount) (Token6OS.sol#738)
 - _approve(sender,_msgSender(),_allowances[sender][_msgSender()] - amount)
(Token6OS.sol#520)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Token6OS.includeInReward(address) (Token6OS.sol#648-660) has costly operations inside a
loop:
 - _excluded.pop() (Token6OS.sol#655)
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop

INFO:Detectors:
Context._msgData() (Token6OS.sol#102-105) is never used and should be removed
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code
INFO:Detectors:
Token6OS._rTotal (Token6OS.sol#349) is set pre-construction with a non-constant function or
state variable:
 - (MAX - (MAX % _tTotal))
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#function-initializing-state
INFO:Detectors:
Function IUniswapV2Router01.WETH() (Token6OS.sol#203) is not in mixedCase
Parameter Token6OS.setTrading(bool)._enable (Token6OS.sol#893) is not in mixedCase
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-c
onventions
INFO:Detectors:
Redundant expression "this (Token6OS.sol#103)" inContext (Token6OS.sol#97-106)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#redundant-statements
INFO:Detectors:
Token6OS.setMaxTransferLimit(uint256) (Token6OS.sol#929-933) uses literals with too many
digits:
 - require(bool,string)(amount >= 500000 * 10 ** 18,Max Transfer limit can not be less than
500,000 tokens) (Token6OS.sol#930)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits
INFO:Detectors:
Loop condition i < _excluded.length (Token6OS.sol#846) should use cached array length instead
of referencing `length` member of the storage array.
 Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#cache-array-length
INFO:Detectors:
Token6OS._tTotal (Token6OS.sol#348) should be constant
Reference:
https://github.com/crytic/slither/wiki/Detector-Documentation#state-variables-that-could-be-decl
ared-constant
INFO:Slither:Token6OS.sol analyzed (7 contracts with 93 detectors), 18 result(s) found

Solidity Static Analysis

Static code analysis is used to identify many common coding problems before a program

is released. It involves examining the code manually or using tools to automate the

process. Static code analysis tools can automatically scan the code without executing it.

Token6OS.sol

Check-effects-interaction:
Potential violation of Checks-Effects-Interaction pattern in Token6OS.(address): Could potentially
lead to re-entrancy vulnerability. Note: Modifiers are currently not considered by this static
analysis.
Pos: 419:12:

Block timestamp:
Use of "block.timestamp": "block.timestamp" can be influenced by miners to a certain degree.
That means that a miner can "choose" the block.timestamp, to a certain degree, to change the
outcome of a transaction in the mined block.
Pos: 1035:17:

Gas costs:
Gas requirement of function Token6OS.excludeFromReward is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 643:93:

Gas costs:
Gas requirement of function Token6OS.includeInReward is infinite: If the gas requirement of a
function is higher than the block gas limit, it cannot be executed. Please avoid loops in your
functions or actions that modify large areas of storage (this includes clearing or copying arrays in
storage)
Pos: 668:38:

For loop over a dynamic array:
Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.
Pos: 670:40:

For loop over a dynamic array:

Loops that do not have a fixed number of iterations, for example, loops that depend on storage
values, have to be used carefully. Due to the block gas limit, transactions can only consume a
certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit
which can cause the complete contract to be stalled at a certain point. Additionally, using
unbounded loops incurs a lot of avoidable gas costs. Carefully test how many items at maximum
you can pass to such functions to make it successful.
Pos: 869:12:

ERC20:
ERC20 contract's "decimals" function should have "uint8" as return type
Pos: 465:33:

Similar variable names:
Token6OS.deliver(uint256) : Variables have very similar names "rAmount" and "tAmount". Note:
Modifiers are currently not considered by this static analysis.
Pos: 597:27:

Guard conditions:
Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in
your code). Use "require(x)" if x can be false, due to e.g. invalid input or a failing external
component.
Pos: 978:5:

Data truncated:
Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of
0.1 since the result is an integer again. This does not hold for division of (only) literal values since
those yield rational constants.
Pos: 901:0:

Solhint Linter

Solhint Linters are the utility tools that analyze the given source code and report

programming errors, bugs, and stylistic errors. For the Solidity language, there are some

linter tools available that a developer can use to improve the quality of their Solidity

contracts.

Token6OS.sol

Compiler version 0.8.26 does not satisfy the ^0.5.8 semver
requirement
Pos: 1:19
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:129
Error message for require is too long
Pos: 9:167
Function name must be in mixedCase
Pos: 5:202
Contract has 18 states declarations but allowed no more than 15
Pos: 1:337
Explicitly mark visibility of state
Pos: 5:360
Explicitly mark visibility of state
Pos: 5:361
Explicitly mark visibility in function (Set ignoreConstructors to
true if using solidity >=0.7.0)
Pos: 5:394
Error message for require is too long
Pos: 9:712
Code contains empty blocks
Pos: 32:718
Error message for require is too long
Pos: 9:942
Error message for require is too long
Pos: 9:943
Error message for require is too long
Pos: 9:944
Avoid making time-based decisions in your business logic
Pos: 13:1014

Software analysis result:
This software reported many false positive results and some are informational issues. So,

those issues can be safely ignored.

	Core Features:

